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Donepezil reverses buprenorphine-induced central
respiratory depression in anesthetized rabbits
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ABSTRACT

Buprenorphine is a mixed opioid receptor agonist-antagonist used in acute and chronic pain management.
Although this agent’s analgesic effect increases in a dose-dependent manner, buprenorphine-induced
respiratory depression shows a marked ceiling effect at higher doses, which is considered to be an indicator of
safety. Nevertheless, cases of overdose mortality or severe respiratory depression associated with
buprenorphine use have been reported. Naloxone can reverse buprenorphine-induced respiratory depression,
but is slow-acting and unstable, meaning that new drug candidates able to specifically antagonize
buprenorphine-induced respiratory depression are needed in order to enable maximal analgesic effect without
respiratory depression. Acetylcholine is an excitatory neurotransmitter in central respiratory control. We
previously showed that a long-acting acetylcholinesterase inhibitor, donepezil, antagonizes morphine-induced
respiratory depression. We have now investigated how donepezil affects buprenorphine-induced respiratory
depression in anesthetized, paralyzed, and artificially ventilated rabbits. We measured phrenic nerve
discharge as an index of respiratory rate and amplitude, and compared discharges following the injection of
buprenorphine with discharges following the injection of donepezil. Buprenorphine-induced suppression of
the respiratory rate and respiratory amplitude was antagonized by donepezil (78.4 ± 4.8 %, 92.3% ± 22.8 % of
control, respectively). These findings indicate that systemically administered donepezil restores
buprenorphine-induced respiratory depression in anesthetized rabbits.
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INTRODUCTION

Opioid analgesics are among the most
effective agents currently available for
treating postoperative and chronic pain.
Apart from their analgesic actions, all
opiates induce various side effects (Bowdle,
1998; Gan, 2006), of which respiratory
depression is the most serious and
potentially life-threatening (Bailey et al.,
2000). Fentanyl and morphine, both μ-
opioid agonists, are widely and frequently
used for acute and chronic pain treatment
(Trescot et al., 2008). Both of these opioids
are high-efficacy full agonists of the μ-

opioid receptor, characterized by a narrow
therapeutic window, and thus careful
titration is required in order to achieve
optimal analgesic effect without inducing
side effects (Dahan et al. ,  2005). In
contrast,  buprenorphine is a potent
analgesic that acts as a partial agonist of the
μ-opioid and opioid receptor-like 1
receptors, and shows antagonism for the κ-
opioid receptor (Lutfy et al., 2003). Its
partial agonistic activity is generally
believed to explain its greater safety, by
virtue of the ceiling effect it exhibits with
regard to μ-opioid receptor-mediated
respiratory depression (Walsh et al., 1994;
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Dahan et al., 2005; Dahan et al., 2006).
Buprenorphine’s analgesic effect increases
in a dose-dependent manner (Dahan et al.,
2006), has a long duration of action, and the
discontinuation of its use appears to elicit
only limited withdrawal symptoms (Cowan
et al., 1977; Dum et al., 1981). Given these
pharmacological properties,  the
comparative safety advantage of
buprenorphine over other opiate agents
stands as a compelling rationale for its use
in many clinical applications. Nevertheless,
various cases of overdose mortality or
severe respiratory depression (Zanette et
al., 1996; Reynaud et al., 1998; Moro et al.,
2006; Schwarz et al., 2007) associated with
buprenorphine use have been reported.

Buprenorphine-induced side effects can
be treated with naloxone, an opioid receptor
antagonist, but the reversal effects do not
occur immediately and do not reach a peak
until three hours after administration, due to
its relative inability to displace
buprenorphine that has already bound to
opioid receptors (Gal,  1989).
Buprenorphine-induced respiratory
depression may also outlast the effects of
naloxone (van Dorp et al., 2006). For these
reasons, alternative agents capable of
reversing buprenorphine-induced
respiratory depression are required to
improve its safety profile.

In our previous study, it was shown that
donepezil, a long-acting synthetic drug
widely used for Alzheimer’s disease (Rho
and Lipson, 1997), can reverse morphine-
induced respiratory depression (Tsujita et
al., 2007).

In the present study, using anesthetized
rabbits as a model, we have investigated
whether donepezil can counteract
buprenorphine-induced respiratory
depression.

METHODS

General

This study was conducted in accordance
with a protocol approved by the Animal
Care and Use Committee of Teikyo
University School of Medicine. The

experimental procedure has been described
in detail elsewhere (Kuwana and Natsui,
1981; Okada et al 2004; Tsujita et al. 2007).
Briefly, 15 healthy rabbits (Japanese White,
male, Sankyo laboratory, Tokyo, Japan)
2.35 ± 0.08 kg (1.98-2.97 kg) were
anesthetized by intraperitoneal
administration of 10 mg/kg ketamine
(Sankyo Pharmaceutical, Tokyo, Japan)
followed by intravenous administration of
40 mg/kg chloralose and 200 mg/kg
urethane (Wako Pure Chemical, Osaka,
Japan). In our previous study, the
combination of chloralose and urethane
maintained stable depth of anesthesia for
over 8 h (Okada et al. 2004); no experiment
in the present study lasted more than 3 h.
After anesthesia was induced, each rabbit
was placed in a supine position on an
electrical heating pad, and rectal
temperature was maintained at 37-38 oC.
The trachea was cannulated in the mid-
cervical region for artificial respiration, and
end-tidal CO2 (EtCO2) was monitored
continuously with a gas analyzer (Respina
1H26, NEC San-Ei, Tokyo, Japan). The
right femoral artery and vein were
catheterized to arterial blood pressure
measurement and intravenous injection.
The common carotid artery was exposed
where the connective tissue between the
trachea and the sternocleidomastoid muscle
were cautiously eliminated. The vagus and
aortic nerves were found next to the
common carotid artery and sectioned
bilaterally at the mid-cervical region.
Muscle paralysis was induced with 0.2 mg/
kg pancuronium bromide (Sankyo
Pharmaceutical, Tokyo, Japan) injected into
the right femoral vein, and artificial
ventilation with room air was initiated. The
same dose of pancuronium bromide was
administered hourly thereafter. Spontaneous
respiration was completely inhibited during
the experiment. EtCO2 was maintained at
35 ± 3 mmHg by adjusting the respiratory
frequency (40-60 breaths/min) and the tidal
volume (20-50 ml/breath) of the ventilator
(Kuwana and Natsui, 1981). P h r e n i c
nerve discharge was used as an index of
central respiratory output (Kuwana and
Natsui, 1981). The right phrenic nerve was
sectioned at the low cervical region, and the
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central section end was placed on a bipolar
platinum electrode in a pool of liquid
paraffin. The phrenic nerve discharge was
amplified using an AC amplifier (AB651J,
Nihon Kohden, Tokyo) and passed through
a band-pass filter (50Hz-3kHz). It was then
half-wave rectified and integrated with a
time constant of 100 ms with a signal-
integrator (EI601G, Nihon Kohden, Tokyo).
Signals of raw phrenic discharge, integrated
phrenic output, EtCO2 and arterial blood
pressure were recorded using a thermal
array recorder (RTA-1200M, Nihon
Kohden, Tokyo). Signal data were stored on
a digital tape recorder (RD-135T, TEAC,
Tokyo) for subsequent analysis.
Respiratory rate was calculated as the
number of phrenic nerve discharge per
minute. Amplitude of integrated phrenic
activity was shown as the percentage of
control.  Minute phrenic activity was
calculated as the multiplication of
respiratory rate and amplitude of integrated
phrenic activity and was shown as the
percentage of control.

Protocol

At about 30 min after surgery, respiratory
rate (breaths/min) and respiratory amplitude

(height of integrated phrenic output) were
measured to provide control or baseline
indices. These were also measured at 10
min after the intravenous injection of 0.02
mg/kg buprenorphine over a period of 1-2
min. Then, after the signal became stable, 4
ml/kg saline (n=6) or 0.4 mg/kg donepezil
(n=6) was injected, and both indices were
also measured 15 min after the injection of
these drugs. In the preliminary study (n =
3), various doses (0.01 mg/kg, 0.02 mg/kg,
0.04 mg/kg) of buprenorphine were
administered to confirm whether 0.02 mg/
kg buprenorphine is sufficient to induce
respiratory depression (Shafford and
Schadt, 2008) (Fig. 1). To assess the central
effect of these drugs, experiments were
performed in rabbits with denervated
peripheral chemoreceptors. The carotid
sinus nerves on both sides were sectioned at
the level of their emergence from the
glossopharyngeal nerves. In most cases
more than 1h had to be allowed for
subsidence of neurogenic hypertension
brought about by the simultaneous
denervation of the carotid sinus
baroreceptors prior to beginning our
experimental observations. At the end of
the experiment, the animal was sacrificed
with intravenous injection of KCl.

Fig. 1: Representative recording of integrated phrenic nerve activity, showing effects at various
doses (0.01 mg/kg, 0.02 mg/kg, 0.04 mg/kg) of buprenorphine. End-tidal CO2 (%) was continuously
monitored, and is shown at the bottom of the figure.
Integ. Phrenic N: Integrated phrenic nerve activity
EtCO2: End-tidal CO2
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Statistical analysis

Respiratory frequency and respiratory
amplitude after injection of buprenorphine
and after injection of saline or donepezil
were both analyzed using a paired t-test. P
< 0.05 was considered significant. Data are
expressed as mean ± SE.

RESULTS

Buprenorphine (0.02 mg/kg) administration
significantly decreased mean respiratory
rate from 106.0 ± 4.0 breaths/min to 53.8 ±
7.8 breaths /min, amplitude of integrated
phrenic nerve activity to 43.8 ± 7.8 % of
control and minute phrenic activity to 26.4
± 7.1 % of control (n = 12).

The buprenorphine-induced reductions
in each index were partly recovered
following administration of donepezil (Fig.
2).  Donepezil induced significant

increments in (a) respiratory rate to 87.0 ±
8.5 breaths /min from 44.0 ± 14.3 breaths/
min (P < 0.05; Fig. 3A), in (b) respiratory
amplitude to 92.3 ± 22.8 % of control from
21.2 ± 8.0 % (P < 0.05; Fig. 3B), and in (c)
minute phrenic activity to 72.6 ± 18.5 % of
control from 12.9 ± 5.5 % (P < 0.05; Fig.
2C). Injection of saline did not induce any
changes in phrenic nerve activity. Systolic
blood pressure did not change significantly
during these experiments.

DISCUSSION

We studied whether systemically administered
donepezil, an acetylcholinesterase inhibitor, is
effective in counteracting buprenorphine-
induced respiratory depression in anesthetized
rabbits. We found that donepezil alleviates
buprenorphine-induced respiratory depression,
without any effects on EtCO2 or systolic blood
pressure.

Fig. 2: Representative recording of effects of donepezil on buprenorphine-induced respiratory
depression. End-tidal CO2 (%) and blood pressure (mmHg) were continuously monitored, and are
shown at the bottom of the figure.
bup: buprenorphine, don: donepezil
Integ. Phrenic N: Integrated phrenic nerve activity
EtCO2: End-tidal CO2

BP: blood pressure
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The respiratory depression induced by
most μ-opioid receptor agonists, such as
morphine and alfentanil, is easily and
immediately reversed by naloxone (Bowdle
1998; Sarton et al. ,  2008), but
simultaneously inhibits opioid-induced
analgesia (Bowdle, 1998). Naloxone has no
effect on reversing analgesia induced by
buprenorphine (Paronis and Holtzman,
1991) but does partially counteract
buprenorphine-induced respiratory
depression. However, naloxone is a
suboptimal solution to alleviate
buprenorphine-induced respiratory
depression because naloxone has a shorter
duration of action than buprenorphine (Gal,
1989; von Dorp et al., 2006; Sarton et al.,
2008) and reaches peak effectiveness
slowly (Gal,  1989). Doxapram, a
respiratory stimulant, has been used to
overcome buprenorphine-induced
respiratory depression (Orwin, 1977;
Flecknell et al., 1989), however, this effect
is short lived (Orwin, 1977). Therefore, the

effects of donepezil on buprenorphine-
induced respiratory depression should be
investigated in clinical settings.

Donepezil is a reversible inhibitor that
exhibits high specificity for centrally active
acetylcholinesterase and raises
acetylcholine (ACh) levels in the brain
(Rho and Lipson, 1997; Rogers et al.,
1998). ACh is an excitatory
neurotransmitter involved in central
respiratory control (Murakoshi et al., 1985;
Monteau et al., 1990; Shao and Feldman,
2000, 2005), suggesting that donepezil-
induced increases of ACh in central
respiratory control may reverse
buprenorphine-induced respiratory
depression.

In rabbits, the recommended dose range
of buprenorphine for analgesia is 0.01-0.05
mg/kg (Dobromylskyj et al. ,  2000).
However, in human volunteers, the onset of
respiratory depression is more rapid than
the onset of analgesia (Dahan et al., 2006),
indicating that respiratory depression may

Fig. 3: Effects of intravenous test drugs (donepezil or saline) on buprenorphine-induced respiratory
depression including (A) respiratory rate (breaths/min), (B) amplitude (% of control), (C) minute
phrenic activity (%of control), * P<0.05 RR: respiratory rate
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be induced by buprenorphine at lower doses
than those associated with induction of
analgesia (Shafford and Schadt, 2008).
Even in a previous study using conscious
rabbits, intravenous administration of 0.02
mg/kg buprenorphine induced about 75%
reduction of control respiratory rate at 10
min after buprenorphine administration
(Shafford and Schadt, 2008). In our study,
we tested anesthetized rabbits, which may
be more susceptible to respiratory
depression than conscious rabbits due to the
co-administration of anesthetics (Pirnay et
al., 2008). Although the results of the
previous study in conscious rabbits
indicated that 0.02 mg/kg buprenorphine
causes near-complete respiratory depression
(Shafford and Schadt, 2008), in our study,
we found that buprenorphine induced a
milder reduction of respiratory rate to about
54% of control. This discrepancy may be
attributable to the different timing (in
conscious vs. anesthetized animals) of
evaluating the baseline respiratory rate (306
breaths/min vs. 106 breaths /min).

Previous study suggests that donepezil at
0.25 mg/kg inhibits ~55% of the
acetylcholinesterase activity in living
monkeys (Shiraishi et al., 2005). To achieve
a greater inhibitory effect, we used 0.4 mg/
kg donepezil in the current study. It is
reported that the maximal increase in
intracerebral ACh levels occurs as early as
14 min after intravenous injection of
donepezil in monkeys (Tsukada et al.,
2004). Although these previous reports
support the assumption that the
concentration of donepezil in the brain
should reach a steady state before the
measurement of indices in the present study
(after 15 min), donepezil only partially
alleviated the morphine-induced respiratory
depression, indicating that further studies
will be needed to evaluate the dose-
dependent effects of donepezil on
buprenorphine-induced respiratory
depression.

In summary, the inhibitory effects of
buprenorphine on respiratory rate and
amplitude are partly recovered by donepezil
in anesthetized rabbit. These effects might
be caused by an increase in the release of
ACh in the respiratory center.
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